Nrf2/HO-1/NQO1 Pathway-Mediated Regulation of Mitophagy in Renal Ischemia-Reperfusion Injury

  • Zexin wang
  • Jinghui Fan
  • Xing Li
  • Zelin Guo
  • Fan Cheng *
Article ID: 4799
Keywords: Nrf2/HO-1/ NQO1, Mitophagy, Renal ischemia-reperfusion injury, Oxidative stress

Abstract

Objective: To investigate the mechanism by which the nuclear factor
erythroid 2–related factor 2 (Nrf2)/heme oxygenase-1 (HO-1)/NAD(P)H quinone oxidoreductase 1 (NQO1) signaling pathway mediates mitophagy to protect against renal ischemia-reperfusion injury (RIRI)Methods: A total of 40 rats were randomly divided into four groups. Ten rats
were assigned to the control group and were given normal saline. The remaining
30 rats were used to establish a RIRI model, with 28 rats successfully modeled.
These were then divided into three groups: the model group (n = 10), which received normal saline; the agonist group (n = 9), which received an Nrf2 agonist;
and the inhibitor group (n = 9), which received an Nrf2 inhibitor. After 14 days
of intervention, renal function (blood urea nitrogen (BUN) and serum creatinine
(Scr)), oxidative stress indicators (malondialdehyde (MDA) and superoxide dismutase (SOD)), expression levels of mitophagy-related proteins (BCL-2/BNIP3/
LC3-II), and expression levels of Nrf2, HO-1, and NQO1 were measured.Results: Compared with the control group, the model, agonist, and inhibitor
groups showed significantly increased levels of BUN, Scr and MDA, while the
levels of SOD, the expression of mitophagy-related proteins (Bnip3 and LC3-
II), and the mRNA and protein expression levels of Nrf2, HO-1, and NQO1 were
significantly decreased (P < 0.05). Compared with the model group, the agonist
group showed significantly decreased BUN, Scr, and MDA levels, and significantly increased SOD levels, BNIP3 and LC3-II protein expression, as well as
mRNA and protein expression of Nrf2, HO-1, and NQO1 (P < 0.05); whereas
the inhibitor group showed increased BUN, Scr, and MDA levels and decreased
SOD levels, BNIP3 and LC3-II protein expression, and Nrf2, HO-1, and NQO1
mRNA and protein levels (P < 0.05). Compared with the agonist group, the inhibitor group exhibited significantly higher BUN, Scr, and MDA levels and lower
SOD levels, Bnip3 and LC3-II protein expression, and Nrf2, HO-1, and NQO1mRNA and protein expression (P < 0.05)

Published
2025-08-26

References

[1] GUO Z, CHEN D, YAO L, et al. The molecular mechanism and therapeutic landscape of copper and cuproptosis in cancer [J]. Signal transduction and targeted therapy, 2025, 10(1): 149.
[2] 高建辉, 薛莹, 张佳齐, et al. 瑞马唑仑对大鼠急性肾缺血再灌注损伤的影响及机制 [J]. 山西医科大学学报, 2024, 55(5): 621-616.
[3] ZHOU X, ZHAO S, LI W, et al. Tubular cell-derived exosomal miR-150-5p contributes to renal fibrosis following unilateral ischemia-reperfusion injury by activating fibroblast in vitro and in vivo [J]. International journal of biological sciences, 2021, 17(14): 4021-4033.
[4] 陈明环, 王咏兰, 李相国, et al. 鬼箭羽醇提取物通过阻止氧化应激和抑制TNF-α-NF-κB及TβR1-Smad2/3通路减轻兔肾缺血再灌注损伤 [J]. 中国病理生理杂志, 2022, 38(4): 688-697.
[5] FENG R, XIONG Y, LEI Y, et al. Lysine-specific demethylase 1 aggravated oxidative stress and ferroptosis induced by renal ischemia and reperfusion injury through activation of TLR4/NOX4 pathway in mice [J]. Journal of cellular and molecular medicine, 2022, 26(15): 4254-4267.
[6] 胡彦, 王锁刚, 翟琼瑶, et al. 积雪草苷调控SIRT1-FOXO3-PINK1-Parkin通路介导的线粒体自噬保护肾缺血再灌注损伤的机制研究 [J]. 天津医药, 2021, 49(11): 1148-1153.
[7] 孟巧云, 王雪, 邱国萍, et al. 雌激素对肾缺血再灌注损伤大鼠Th17/Treg平衡、氧化应激及肾组织NF-κB、TGF-β1表达的影响 [J]. 现代生物医学进展, 2021, 21(10): 1844-1848.
[8] JIANG J, WEN C, LI Y, et al. IFC-305 attenuates renal ischemia-reperfusion injury by promoting the production of hydrogen sulfide (H(2)S) via suppressing the promoter methylation of cystathionine γ-lyase (CSE) [J]. Bioengineered, 2022, 13(5): 12045-12054.
[9] 陈家辉, 张燕子, 张艾莎, et al. 缺血预处理的肾小管细胞来源外泌体对肾缺血再灌注损伤大鼠PI3K/AKT/mTOR信号通路的调控机制 [J]. 中华肾脏病杂志, 2024, 40(9): 732-740.
[10] HOU Y, XIN Y, LIU S, et al. A biocompatible nanoparticle-based approach to inhibiting renal ischemia reperfusion injury in mice by blocking thrombospondin-1 activity [J]. American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons, 2022, 22(9): 2246-2253.
[11] 刘钰林, 陈珮如, 梁毅敏, et al. 米诺地尔联合地塞米松对肾缺血再灌注损伤大鼠肾功能指标和氧化应激指标的影响 [J]. 现代药物与临床, 2020, 35(06): 1064-1068.
[12] AL-SULTANY H H A, ALTIMIMI M, QASSAM H, et al. Cardamonin mitigates kidney injury by modulating inflammation, oxidative stress, and apoptotic signaling in rats subjected to renal ischemia and reperfusion [J]. Journal of medicine and life, 2023, 16(12): 1852-1856.
[13] 曾蕾, 席晓荣, 孙承霞, et al. 基于氧化应激及其相关凋亡蛋白研究苓桂术甘汤预处理对大鼠心肌缺血再灌注损伤的保护作用及机制 [J]. 中华中医药学刊, 2024, 42(06): 60-4+267-270.
[14] 刘庆亮, 杨自生, 曹保江. 芍药苷预处理对大鼠心肌缺血-再灌注损伤氧化应激的保护作用及对Nrf-2/TXNIP/NLRP-3信号通路的影响 [J]. 中国循证心血管医学杂志, 2023, 15(03): 352-356.
[15] 邓新琦, 熊永红, 李维. PINK1/Parkin-溶酶体相关膜蛋白2通路介导的线粒体-溶酶体自噬在肾缺血再灌注损伤后上皮-间充质转化中的作用 [J]. 中华实验外科杂志, 2022, 39(12): 2331-2334.
[16] 王华, 谭超, 王子焱, et al. 三七总皂苷基于PI3K/Akt/mTOR通路调控自噬和泛素蛋白积累对大鼠肾缺血再灌注损伤的影响 [J]. 现代中西医结合杂志, 2023, 32(11): 1461-7+72.
[17] 赖轻舟, 吴小琴, 龚玉萍. 激酶锚定蛋白12/蛋白原转化酶枯草杆菌蛋白酶/kexin型6信号通路对糖尿病肾脏疾病小鼠足细胞线粒体自噬保护作用的研究 [J]. 中国糖尿病杂志, 2024, 32(10): 770-777.
[18] 曹蛟, 刘建和, 张杼惠, et al. 柴胡三参胶囊调控HIF-1α/BNIP3/NIX介导的线粒体自噬通路减轻心肌缺血再灌注损伤作用的研究 [J]. 世界科学技术-中医药现代化, 2023, 25(03): 993-1001.
[19] 王娓娓, 丁昱, 王琳, et al. 灯盏花素通过转录因子cAMP反应元件结合蛋白磷酸化促进细胞自噬保护心肌细胞缺血-再灌注损伤的机制研究 [J]. 解放军医学院学报, 2023, 44(01): 43-49.
[20] 梁荣珍, 王太成, 林德文, et al. 艾帕素13(apelin-13)通过阻断PINK1/parkin信号通路促进线粒体自噬改善大鼠心肌缺血再灌注损伤 [J]. 细胞与分子免疫学杂志, 2023, 39(11): 981-987.
[21] 庞鹏飞, 冯达云, 黄涛, et al. 氧化槐果碱上调Nrf2/HO-1/NQO1通路及抑制NF-κB的活化缓解脑缺血再灌注大鼠氧化损伤和炎性反应 [J]. 医学分子生物学杂志, 2020, 17(2): 85-90.
[22] 潘建立, 郑良英, 叶成杰. 右美托咪定通过核转录因子红系2相关因子2/重组人血红素加氧酶-1信号转导通路对小鼠肾缺血再灌注损伤的保护作用 [J]. 中国临床药理学杂志, 2023, 39(02): 251-255.
[23] 李雪, 李博, 谈彬, et al. 槲皮素预处理ALI大鼠肺组织损伤、炎症/氧化应激反应、铁死亡及Nrf2/HO-1信号通路激活情况观察 [J]. 山东医药, 2024, 64(15): 13-18.