Psychological stress-driven modulation of YAP1 signaling: Mechanistic pathways linking stress biology to tumor progression
Abstract
Psychological distress is increasingly recognized as a biologically active contributor to cancer progression, and emerging evidence identifies yes-associated protein 1 (YAP1) as a central molecular node through which stress-related signaling influences tumor behavior. As a mechanosensitive transcriptional co-activator within the Hippo pathway, YAP1 integrates neuroendocrine, inflammatory, oxidative, and metabolic cues that become dysregulated under chronic stress, including cortisol elevation, sympathetic activation, pro-inflammatory cytokines, and reactive oxygen species. These stress-induced factors converge on Hippo-dependent and non-canonical regulators such as PI3K–AKT, Ras–MAPK, and integrin–FAK–RhoA, promoting YAP1 dephosphorylation, nuclear translocation, and oncogenic transcriptional activation. Enhanced YAP1 signaling drives proliferation, survival, metabolic rewiring, EMT, metastasis, immune evasion, and resistance to chemotherapy and immunotherapy, while also contributing to pain sensitization and inflammatory cascades. Together, these mechanisms suggest that YAP1 functions as a molecular bridge linking psychological stress with tumor progression, shaping both biological vulnerability and treatment responsiveness. Understanding how psychobiological stress modulates YAP1 opens opportunities for integrative strategies combining pharmacologic YAP1 targeting with psychological interventions that normalize cortisol rhythms, reduce inflammation, and restore autonomic balance, offering a novel framework for stress-responsive precision psycho-oncology.
Copyright (c) 2025 Author(s)

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
1. Calses PC, Crawford JJ, Lill JR, Dey A. Hippo pathway in cancer: Aberrant regulation and therapeutic opportunities. Trends Cancer. 2019; 5(5): 297-307. doi: 10.1016/j.trecan.2019.04.001
2. Su D, Li Y, Zhang W, et al. SPTAN1/NUMB axis senses cell density to restrain cell growth and oncogenesis through Hippo signaling. Journal of Clinical Investigation. 2023; 133(20). doi: 10.1172/JCI168888
3. Ma Y, Yang Y, Wang F, et al. Hippo‐YAP signaling pathway: A new paradigm for cancer therapy. Int J Cancer. 2015; 137(10): 2275-2286. doi: 10.1002/ijc.29073
4. Schlegelmilch K, Mohseni M, Kirak O, et al. Yap1 acts downstream of α-catenin to control epidermal proliferation. Cell. 2011; 144(5): 782-795. doi: 10.1016/j.cell.2011.02.031
5. Bae SJ, Luo X. Activation mechanisms of the Hippo kinase signaling cascade. Biosci Rep. 2018; 38(4). doi: 10.1042/BSR20171469
6. He C, Lv X, Hua G, et al. YAP forms autocrine loops with the ERBB pathway to regulate ovarian cancer initiation and progression. Oncogene. 2015; 34(50): 6040-6054. doi: 10.1038/onc.2015.52
7. Deng Y, Lu J, Li W, et al. Reciprocal inhibition of YAP/TAZ and NF-κB regulates osteoarthritic cartilage degradation. Nat Commun. 2018; 9(1): 4564. doi: 10.1038/s41467-018-07022-2
8. Chen W, Wu S, Chen Y, et al. USP20 mediates bladder cancer progression via altering the activity of Hippo-YAP axis through directly stabilizing YAP1 protein. 2024; preprint. doi: 10.21203/rs.3.rs-3908828/v1
9. Song S, Honjo S, Jin J, et al. The Hippo coactivator YAP1 mediates EGFR overexpression and confers chemoresistance in esophageal cancer. Clinical Cancer Research. 2015; 21(11): 2580-2590. doi: 10.1158/1078-0432.CCR-14-2191
10. Li B, He J, Zhang R, et al. Integrin‐linked kinase in the development of gastric tumors induced by helicobacter pylori: Regulation and prevention potential. Helicobacter. 2024; 29(4). doi: 10.1111/hel.13109
11. Baia GS, Caballero OL, Orr BA, et al. Yes-associated protein 1 is activated and functions as an oncogene in meningiomas. Molecular Cancer Research. 2012; 10(7): 904-913. doi: 10.1158/1541-7786.MCR-12-0116
12. Li N, Xu H, Li B, et al. Integrin-linked kinase–Hippo-YAP axis drives Helicobacter pylori–associated gastric tumorigenesis: therapeutic implications. Front Cell Infect Microbiol. 2025; 15: 1601501. doi: 10.3389/fcimb.2025.1601501
13. Oka T, Mazack V, Sudol M. Mst2 and Lats Kinases Regulate Apoptotic Function of Yes Kinase-associated Protein (YAP). Journal of Biological Chemistry. 2008;283(41):27534-27546. doi: 10.1074/jbc.M804380200
14. Xu W, Yang Z, Xie C, et al. PTEN lipid phosphatase inactivation links the Hippo and PI3K/Akt pathways to induce gastric tumorigenesis. Journal of Experimental & Clinical Cancer Research. 2018; 37(1): 198. doi: 10.1186/s13046-018-0795-2
15. Kumar R, Hong W. Hippo signaling at the hallmarks of cancer and drug resistance. Cells. 2024; 13(7): 564. doi: 10.3390/cells13070564
16. Taniguchi K, Wu LW, Grivennikov SI, et al. A gp130–Src–YAP module links inflammation to epithelial regeneration. Nature. 2015; 519(7541): 57-62. doi: 10.1038/nature14228
17. Yang B, Sun H, Xu X, et al. YAP1 inhibits the induction of TNF‐α‐stimulated bone‐resorbing mediators by suppressing the NF‐κB signaling pathway in MC3T3‐E1 cells. J Cell Physiol. 2020; 235(5): 4698-4708. doi: 10.1002/jcp.29348
18. Lim S, Hermance N, Mudianto T, et al. STK25 directly activates LATS1/2 independent of MST/MAP4Ks. 2018; preprint. doi: 10.1101/354233
19. Yu FX, Zhang Y, Park HW, et al. Protein kinase A activates the Hippo pathway to modulate cell proliferation and differentiation. Genes Dev. 2013; 27(11): 1223-1232. doi: 10.1101/gad.219402.113
20. Rinschen MM, Grahammer F, Hoppe AK, et al. YAP-mediated mechanotransduction determines the podocyte’s response to damage. Sci Signal. 2017; 10(474). doi: 10.1126/scisignal.aaf8165
21. Ji Y, Jia L, Zhang Y, et al. Antitumor activity of the plant extract morin in tongue squamous cell carcinoma cells. Oncol Rep. 2018. doi: 10.3892/or.2018.6650
22. Baroja I, Mazo A, López-Sánchez A, Moya IM. Expected and unexpected effects after systemic inhibition of Hippo transcriptional output in cancer. Nat Commun. 2024; 15(1): 2700. doi: 10.1038/s41467-024-46531-1
23. Chen J, Mei Z, Huang B, et al. IL‐6/YAP1/β‐catenin signaling is involved in intervertebral disc degeneration. J Cell Physiol. 2019; 234(5): 5964-5971. doi: 10.1002/jcp.27065
24. Chen P, Yang B, Wu Y, Wang J. YAP1 regulates chondrogenic differentiation of ATDC5 promoted by temporary TNF-α stimulation through AMPK signaling pathway. Mol Cell Biochem. 2020; 474(1-2): 209-218. doi: 10.1007/s11010-020-03846-z
25. Zhao Y, Chen Y, Guo C, et al. Chronic stress dysregulates the Hippo/YAP/14-3-3η pathway and induces mitochondrial damage in basolateral amygdala in a mouse model of depression. Theranostics. 2024; 14(9): 3653-3673. doi: 10.7150/thno.92676
26. Wu W, Ziemann M, Huynh K, et al. Activation of Hippo signaling pathway mediates mitochondria dysfunction and dilated cardiomyopathy in mice. Theranostics. 2021; 11(18): 8993-9008. doi: 10.7150/thno.62302
27. Jin Y, Hu C, Xia J, et al. Bimetallic clusterzymes-loaded dendritic mesoporous silica particle regulate arthritis microenvironment via ROS scavenging and YAP1 stabilization. Bioact Mater. 2024; 42: 613-627. doi: 10.1016/j.bioactmat.2024.09.004
28. Muranen T, Selfors LM, Hwang J, et al. ERK and p38 MAPK activities determine sensitivity to PI3K/mTOR inhibition via regulation of MYC and YAP. Cancer Res. 2016; 76(24): 7168-7180. doi: 10.1158/0008-5472.CAN-16-0155
29. Chu G, Zhang W, Zhou P, et al. Substrate topography regulates differentiation of annulus fibrosus-derived stem cells via CAV1-YAP-mediated mechanotransduction. ACS Biomater Sci Eng. 2021; 7(3): 862-871. doi: 10.1021/acsbiomaterials.9b01823
30. Song S, Ajani JA, Honjo S, et al. Hippo coactivator YAP1 upregulates SOX9 and endows esophageal cancer cells with stem-like properties. Cancer Res. 2014; 74(15): 4170-4182. doi: 10.1158/0008-5472.CAN-13-3569
31. Kang L, Zhang H, Jia C, et al. Targeting oxidative stress and inflammation in intervertebral disc degeneration: Therapeutic perspectives of phytochemicals. Front Pharmacol. 2022; 13. doi: 10.3389/fphar.2022.956355
32. Raj N, Bam R. Reciprocal crosstalk between YAP1/Hippo pathway and the p53 family proteins: Mechanisms and outcomes in cancer. Front Cell Dev Biol. 2019; 7. doi: 10.3389/fcell.2019.00159
33. Wang J, Zhu Q, Li R, et al. YAP1 protects against septic liver injury via ferroptosis resistance. Cell Biosci. 2022; 12(1): 163. doi: 10.1186/s13578-022-00902-7
34. Vališ K, Talacko P, Grobárová V, et al. Shikonin regulates C-MYC and GLUT1 expression through the MST1-YAP1-TEAD1 axis. Exp Cell Res. 2016; 349(2): 273-281. doi: 10.1016/j.yexcr.2016.10.018
35. Lin G, Zhang Y, Wang K, et al. Identification of a new class of activators of the Hippo pathway with antitumor activity in vitro and in vivo. Biochem Pharmacol. 2024; 224: 116217. doi: 10.1016/j.bcp.2024.116217
36. Li H, Wang H, Zhou Z, et al. Lumbar instability remodels cartilage endplate to induce intervertebral disc degeneration by recruiting osteoclasts via Hippo–CCL3 signaling. Bone Res. 2024; 12: 34. doi: 10.1038/s41413-024-00270-0
37. Berthold R, Isfort I, Erkut C, et al. Fusion protein-driven IGF-IR/PI3K/AKT signals deregulate Hippo pathway promoting oncogenic cooperation of YAP1 and FUS-DDIT3 in myxoid liposarcoma. Oncogenesis. 2022; 11(1): 20. doi: 10.1038/s41389-022-00394-7
38. Yan MQ, Zhu BH, Liu XH, et al. Mitoguardin 1 and 2 promote granulosa cell proliferation by activating AKT and regulating the Hippo-YAP1 signaling pathway. Cell Death Dis. 2023; 14(11): 779. doi: 10.1038/s41419-023-06312-y
39. Kato K, Diéguez-Hurtado R, Park DY, et al. Pulmonary pericytes regulate lung morphogenesis. Nat Commun. 2018; 9(1): 2448. doi: 10.1038/s41467-018-04913-2
40. Wang JJ, Ge W, Zhai QY, et al. Single-cell transcriptome landscape of ovarian cells during primordial follicle assembly in mice. PLoS Biol. 2020; 18(12): e3001025. doi: 10.1371/journal.pbio.3001025
41. Lin D, Luo C, Wei P, et al. YAP1 recognizes inflammatory and mechanical cues to exacerbate benign prostatic hyperplasia via promoting cell survival and fibrosis. Advanced Science. 2024; 11(5). doi: 10.1002/advs.202304274
42. Xiao Y, Zhou L, Andl T, Zhang Y. YAP1 controls the N-cadherin-mediated tumor-stroma interaction in melanoma progression. Oncogene. 2024; 43(12): 884-898. doi: 10.1038/s41388-024-02953-1
43. Xiang X, Wang Y, Zhang H, et al. Vasodilator-stimulated phosphoprotein promotes liver metastasis of gastrointestinal cancer by activating a β1-integrin-FAK-YAP1/TAZ signaling pathway. NPJ Precis Oncol. 2018; 2(1): 2. doi: 10.1038/s41698-017-0045-7
44. Zhurenkov KE, Lobov AA, Bildyug NB, et al. Focal adhesion maturation responsible for behavioral changes in human corneal stromal fibroblasts on fibrillar substrates. Int J Mol Sci. 2024; 25(16): 8601. doi: 10.3390/ijms25168601
45. Li H, Wang X, Mu H, et al. Mir-484 contributes to diminished ovarian reserve by regulating granulosa cell function via YAP1-mediated mitochondrial function and apoptosis. Int J Biol Sci. 2022; 18(3): 1008-1021. doi: 10.7150/ijbs.68028
46. Jiang SH, Zhang S, Cai Z, et al. Mechanical cues of extracellular matrix determine tumor innervation. 2024; preprint. doi: 10.1101/2024.03.25.586535
47. Boussemart L, Malka-Mahieu H, Girault I, et al. eIF4F is a nexus of resistance to anti-BRAF and anti-MEK cancer therapies. Nature. 2014; 513(7516): 105-109. doi: 10.1038/nature13572
48. Na S. Engineering tools for studying coordination between biochemical and biomechanical activities in cell migration. In: ASME 2011 Summer Bioengineering Conference, Parts A and B. American Society of Mechanical Engineers; 2011. pp. 325-326. doi: 10.1115/SBC2011-53709
49. Nardone G, Oliver-De La Cruz J, Vrbsky J, et al. YAP regulates cell mechanics by controlling focal adhesion assembly. Nat Commun. 2017; 8(1): 15321. doi: 10.1038/ncomms15321
50. Zhou J, Deng Y, Mei J, et al. Polycystin‐1 mutant alters mechanotransduction in response to collagen and extracellular matrix stiffness via daam1‐dependent microfilament remodeling. Advanced Science. 2025; 12(41). doi: 10.1002/advs.202509846
51. Dupont S, Morsut L, Aragona M, et al. Role of YAP/TAZ in mechanotransduction. Nature. 2011; 474(7350): 179-183. doi: 10.1038/nature10137
52. Liu XM, Yan MQ, Zhu BH, et al. Mitoguardin-2 promotes cell proliferation by activating AKT and regulating Hippo/YAP1 signaling pathway in ovarian granulosa cells. 2023; preprint. doi: 10.21203/rs.3.rs-3115531/v1
53. Hao Y, Chun A, Cheung K, et al. Tumor suppressor LATS1 is a negative regulator of oncogene YAP. Journal of Biological Chemistry. 2008; 283(9): 5496-5509. doi: 10.1074/jbc.M709037200
54. Caliari SR, Vega SL, Kwon M, et al. Dimensionality and spreading influence MSC YAP/TAZ signaling in hydrogel environments. Biomaterials. 2016; 103: 314-323. doi: 10.1016/j.biomaterials.2016.06.061
55. Liu J, Zhao X, Wang K, et al. A novel YAP1/SLC35B4 regulatory axis contributes to proliferation and progression of gastric carcinoma. Cell Death Dis. 2019; 10(6): 452. doi: 10.1038/s41419-019-1674-2
56. Chen D, Sun Y, Wei Y, et al. LIFR is a breast cancer metastasis suppressor upstream of the Hippo-YAP pathway and a prognostic marker. Nat Med. 2012; 18(10): 1511-1517. doi: 10.1038/nm.2940
57. Di Agostino S, Sorrentino G, Ingallina E, et al. YAP enhances the pro‐proliferative transcriptional activity of mutant p53 proteins. EMBO Rep. 2016; 17(2): 188-201. doi: 10.15252/embr.201540488
58. Piersma B, Bank RA, Boersema M. Signaling in fibrosis: TGF-β, WNT, and YAP/TAZ converge. Front Med (Lausanne). 2015; 2. doi: 10.3389/fmed.2015.00059
59. Xue X, Hong X, Li Z, et al. Acoustic tweezing cytometry enhances osteogenesis of human mesenchymal stem cells through cytoskeletal contractility and YAP activation. Biomaterials. 2017; 134: 22-30. doi: 10.1016/j.biomaterials.2017.04.039
60. Zheng Y, Nützl M, Schackel T, et al. Biomaterial scaffold stiffness influences the foreign body reaction, tissue stiffness, angiogenesis and neuroregeneration in spinal cord injury. Bioact Mater. 2025; 46: 134-149. doi: 10.1016/j.bioactmat.2024.12.006
61. Liu X, Yuan Y, Wu Y, et al. Extracellular matrix stiffness modulates myopia scleral remodeling through integrin/F-Actin/YAP axis. Invest Ophthalmol Vis Sci. 2025; 66(2): 22. doi: 10.1167/iovs.66.2.22
62. Wang Y, Justilien V, Brennan KI, et al. PKCι regulates nuclear YAP1 localization and ovarian cancer tumorigenesis. Oncogene. 2017; 36(4): 534-545. doi: 10.1038/onc.2016.224
63. Bruekers SMC, Bao M, Hendriks JMA, et al. Adaptation trajectories during adhesion and spreading affect future cell states. Sci Rep. 2017; 7(1): 12308. doi: 10.1038/s41598-017-12467-4
64. Hong X, Nguyen HT, Chen Q, et al. Opposing activities of the R as and Hippo pathways converge on regulation of YAP protein turnover. EMBO J. 2014; 33(21): 2447-2457. doi: 10.15252/embj.201489385
65. Saldívar MC, Salehi S, Veeger RPE, et al. Rational positioning of 3D printed micro-bricks to realize high-fidelity, multi-functional soft-hard interfaces. 2023; preprint. doi: 10.1101/2023.01.21.525002
66. Miranda A, Hamilton PT, Zhang AW, et al. Cancer stemness, intratumoral heterogeneity, and immune response across cancers. Proceedings of the National Academy of Sciences. 2019; 116(18): 9020-9029. doi: 10.1073/pnas.1818210116
67. Chen P, Hsu WH, Han J, et al. Cancer stemness meets immunity: From mechanism to therapy. Cell Rep. 2021; 34(1): 108597. doi: 10.1016/j.celrep.2020.108597
68. Liu X, Chen B, Xie F, et al. FOXP4 is a direct YAP1 target that promotes gastric cancer stemness and drives metastasis. Cancer Res. 2024; 84(21): 3574-3588. doi: 10.1158/0008-5472.CAN-23-3074
69. Lee HJ, Diaz MF, Price KM, et al. Fluid shear stress activates YAP1 to promote cancer cell motility. Nat Commun. 2017; 8(1): 14122. doi: 10.1038/ncomms14122
70. Ooki T, Hayashi T, Yamamoto Y, Hatakeyama M. The YAP1 isoform, YAP1-2α, promotes oncogenic properties by inducing liquid-liquid phase separation through specific heterodimerization with TAZ. 2025; preprint. doi: 10.1101/2025.01.28.635202
71. Qi R, Wang Y, Yan F, Zhong J. Exosomes derived from ITGB1 modified Telocytes alleviates LPS-induced inflammation and oxidative stress through YAP1/ROS axis. Heliyon. 2024; 10(5): e27086. doi: 10.1016/j.heliyon.2024.e27086
72. Camberos V, Baio J, Mandujano A, et al. The impact of spaceflight and microgravity on the human Islet-1+ cardiovascular progenitor cell transcriptome. Int J Mol Sci. 2021; 22(7): 3577. doi: 10.3390/ijms22073577
73. Thompson BJ. YAP/TAZ: Drivers of tumor growth, metastasis, and resistance to therapy. BioEssays. 2020; 42(5). doi: 10.1002/bies.201900162
74. Shibata M, Ham K, Hoque MO. A time for YAP1: Tumorigenesis, immunosuppression and targeted therapy. Int J Cancer. 2018; 143(9): 2133-2144. doi: 10.1002/ijc.31561
75. Zhang W, Dai Y, Hsu P, et al. Targeting YAP in malignant pleural mesothelioma. J Cell Mol Med. 2017; 21(11): 2663-2676. doi: 10.1111/jcmm.13182
76. Dhir T, Schultz CW, Jain A, et al. Abemaciclib is effective against pancreatic cancer cells and synergizes with HuR and YAP1 inhibition. Molecular Cancer Research. 2019; 17(10): 2029-2041. doi: 10.1158/1541-7786.MCR-19-0589
77. Ghaboura N. Unraveling the Hippo pathway: YAP/TAZ as central players in cancer metastasis and drug resistance. EXCLI J. 2025;24:612-637. doi: 10.17179/excli2025-8351
78. Hsu PC, Yang CT, Jablons DM, You L. The role of yes-associated protein (YAP) in regulating programmed death-ligand 1 (PD-L1) in thoracic cancer. Biomedicines. 2018; 6(4): 114. doi: 10.3390/biomedicines6040114
79. Zhou J, Yu C, Yang W, et al. Recent advances in combination therapy of YAP inhibitors with physical anti-cancer strategies. Biomolecules. 2025; 15(7): 945. doi: 10.3390/biom15070945
80. Yuan Y, Adam A, Zhao C, Chen H. Recent advancements in the mechanisms underlying resistance to PD-1/PD-L1 blockade immunotherapy. Cancers (Basel). 2021; 13(4): 663. doi: 10.3390/cancers13040663
81. Fernandez-L A, Squatrito M, Northcott P, et al. Oncogenic YAP promotes radioresistance and genomic instability in medulloblastoma through IGF2-mediated Akt activation. Oncogene. 2012; 31(15): 1923-1937. doi: 10.1038/onc.2011.379
82. Kovács SA, Fekete JT, Győrffy B. Predictive biomarkers of immunotherapy response with pharmacological applications in solid tumors. Acta Pharmacol Sin. 2023; 44(9): 1879-1889. doi: 10.1038/s41401-023-01079-6
83. Yin N, Liu Y, Weems C, et al. Protein kinase Cι mediates immunosuppression in lung adenocarcinoma. Sci Transl Med. 2022; 14(671). doi: 10.1126/scitranslmed.abq5931
84. Zhang X, George J, Deb S, et al. The Hippo pathway transcriptional co-activator, YAP, is an ovarian cancer oncogene. Oncogene. 2011; 30(25): 2810-2822. doi: 10.1038/onc.2011.8
85. Song S, Wang Z, Li Y, et al. PPARδ interacts with the Hippo coactivator YAP1 to promote SOX9 expression and gastric cancer progression. Molecular Cancer Research. 2020; 18(3): 390-402. doi: 10.1158/1541-7786.MCR-19-0895
86. Slemmons KK, Yeung C, Baumgart JT, et al. Targeting Hippo-dependent and Hippo-independent YAP1 signaling for the treatment of childhood rhabdomyosarcoma. Cancer Res. 2020; 80(14): 3046-3056. doi: 10.1158/0008-5472.CAN-19-3853
87. Nguyen LT, Tretiakova MS, Silvis MR, et al. ERG activates the YAP1 transcriptional program and induces the development of age-related prostate tumors. Cancer Cell. 2015; 27(6): 797-808. doi: 10.1016/j.ccell.2015.05.005
88. Yamazoe M, Ozasa H, Tsuji T, et al. Yes‐associated protein 1 mediates initial cell survival during lorlatinib treatment through AKT signaling in ROS1‐rearranged lung cancer. Cancer Sci. 2023; 114(2): 546-560. doi: 10.1111/cas.15622
89. Yang Q, Wang M, Xu J, et al. LINC02159 promotes non-small cell lung cancer progression via ALYREF/YAP1 signaling. Mol Cancer. 2023; 22(1): 122. doi: 10.1186/s12943-023-01814-x
90. Thilakasiri P, O’Keefe RN, To SQ, et al. Mechanisms of cellular crosstalk in the gastric tumor microenvironment are mediated by YAP1 and STAT3. Life Sci Alliance. 2024; 7(2): e202302411. doi: 10.26508/lsa.202302411
91. Schott A, Simon T, Müller S, et al. The IGF2BP1 oncogene is a druggable m6A-dependent enhancer of YAP1-driven gene expression in ovarian cancer. NAR Cancer. 2025; 7(1). doi: 10.1093/narcan/zcaf006
92. Wei H, Wang F, Wang Y, et al. Verteporfin suppresses cell survival, angiogenesis and vasculogenic mimicry of pancreatic ductal adenocarcinoma via disrupting the YAP‐TEAD complex. Cancer Sci. 2017; 108(3): 478-487. doi: 10.1111/cas.13138
93. Hansen CG, Moroishi T, Guan KL. YAP and TAZ: A nexus for Hippo signaling and beyond. Trends Cell Biol. 2015; 25(9): 499-513. doi: 10.1016/j.tcb.2015.05.002
94. Azzolin L, Zanconato F, Bresolin S, et al. Role of TAZ as mediator of Wnt signaling. Cell. 2012; 151(7): 1443-1456. doi: 10.1016/j.cell.2012.11.027
95. Sunaguchi T, Horikoshi Y, Hanaki T, et al. High glucose-stimulated aPKC activation promotes pancreatic cancer cell progression through YAP signaling. Anticancer Res. 2023; 43(11): 4843-4853. doi: 10.21873/anticanres.16681
96. Plewes MR, Hou X, Zhang P, et al. Yes-associated protein 1 is required for proliferation and function of bovine granulosa cells in vitro†. Biol Reprod. 2019;101(5):1001-1017. doi: 10.1093/biolre/ioz139
97. Ito T, Nakamura A, Tanaka I, et al. CADM 1 associates with Hippo pathway core kinases; membranous co–expression of CADM 1 and LATS 2 in lung tumors predicts good prognosis. Cancer Sci. 2019; 110(7): 2284-2295. doi: 10.1111/cas.14040
98. Praskova M, Xia F, Avruch J. MOBKL1A/MOBKL1B phosphorylation by MST1 and MST2 inhibits cell proliferation. Current Biology. 2008; 18(5): 311-321. doi: 10.1016/j.cub.2008.02.006
99. Kim J, Kim YH, Kim J, et al. YAP/TAZ regulates sprouting angiogenesis and vascular barrier maturation. Journal of Clinical Investigation. 2017; 127(9): 3441-3461. doi: 10.1172/JCI93825
100. Lin SC, Lee HC, Hsu CT, et al. Targeting anthrax toxin receptor 2 ameliorates endometriosis progression. Theranostics. 2019; 9(3): 620-632. doi: 10.7150/thno.30655
101. Lin S, Lee H, Hou P, et al. Targeting hypoxia‐mediated YAP1 nuclear translocation ameliorates pathogenesis of endometriosis without compromising maternal fertility. J Pathol. 2017; 242(4): 476-487. doi: 10.1002/path.4922
102. Geraldo LHM, Spohr TCL de S, Amaral RF do, et al. Role of lysophosphatidic acid and its receptors in health and disease: Novel therapeutic strategies. Signal Transduct Target Ther. 2021; 6(1): 45. doi: 10.1038/s41392-020-00367-5
103. Lv X, He C, Huang C, et al. Timely expression and activation of YAP1 in granulosa cells is essential for ovarian follicle development. The FASEB Journal. 2019; 33(9): 10049-10064. doi: 10.1096/fj.201900179RR
104. Wang Y, Hu G, Liu F, et al. Deletion of yes-associated protein (YAP) specifically in cardiac and vascular smooth muscle cells reveals a crucial role for yap in mouse cardiovascular development. Circ Res. 2014; 114(6): 957-965. doi: 10.1161/CIRCRESAHA.114.303411
105. Li L, Liu CQ, Li TF, et al. Analysis of altered micro RNA expression profiles in focal cortical dysplasia IIB. J Child Neurol. 2016; 31(5): 613-620. doi: 10.1177/0883073815609148
106. Rashid F, Xie Z, Li M, et al. Roles and functions of IAV proteins in host immune evasion. Front Immunol. 2023; 14. doi: 10.3389/fimmu.2023.1323560
107. Xu F, Ahmed ASI, Kang X, et al. MicroRNA-15b/16 attenuates vascular neointima formation by promoting the contractile phenotype of vascular smooth muscle through targeting YAP. Arterioscler Thromb Vasc Biol. 2015; 35(10): 2145-2152. doi: 10.1161/ATVBAHA.115.305748
